3 and 4 .Determinants and Matrices
hard

If $A\, = \,\left[ {\begin{array}{*{20}{c}}
0&{ - 1}\\
1&0
\end{array}} \right],$ then which one of the following statements is not correct?

A

$A^2 + I = A(A^2 - I)$

B

$A^4 - I = A^2 + I$

C

$A^3 + I = A(A^3 - I)$

D

$A^3 - I = A(A- I)$

(JEE MAIN-2015)

Solution

Given that

$A = \left[ {\begin{array}{*{20}{c}}
0&{ – 1}\\
1&0
\end{array}} \right]$

${A^2} = \left[ {\begin{array}{*{20}{c}}
{ – 1}&0\\
0&{ – 1}
\end{array}} \right] \Rightarrow {A^2} =  – I$

${A^3} = \left[ {\begin{array}{*{20}{c}}
0&1\\
{ – 1}&0
\end{array}} \right]$

${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0\\
0&1
\end{array}} \right] = I$

${A^2} + I = {A^3} – A$

$ – I + I = {A^3} – A$

${A^3} \ne A$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.